2 % Evaluates Histogram data
6 % estimates fun-statistic
9 %
'std' standard deviation
11 %
'sem' standard error of the mean
12 %
'rms' root mean square
13 %
'meansq' mean of squares
15 %
'sumsq' sum of squares
16 %
'CM#' central moment of order #
18 %
'kurtosis' excess coefficient (Fisher kurtosis)
20 % see also: NaN/statistic
23 % [1] C.L. Nikias and A.P. Petropulu
"Higher-Order Spectra Analysis" Prentice Hall, 1993.
24 % [2] C.E. Shannon and W. Weaver
"The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
28 % This program is free software; you can redistribute it and/or
29 % modify it under the terms of the GNU General Public License
30 % as published by the Free Software Foundation; either version 2
31 % of the License, or (at your option) any later version.
33 % This program is distributed in the hope that it will be useful,
34 % but WITHOUT ANY WARRANTY; without even the implied warranty of
35 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
36 % GNU General Public License
for more details.
38 % You should have received a copy of the GNU General Public License
39 % along with
this program;
if not, write to the Free Software
40 % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
42 % $Id:
hist2res.m 2202 2009-10-27 12:06:45Z schloegl $
43 % Copyright (c) 1996-2002,2006 by Alois Schloegl <a.schloegl@ieee.org>
44 % This is part of the BIOSIG-toolbox http:
47 if strcmp(H.datatype,
'HISTOGRAM')
49 elseif strcmp(H.datatype,'qc:histo')
51 if isfield(H,'THRESHOLD'),
54 TH = repmat([-inf,inf],HDR.NS,1);
58 % remove overflowing samples
59 HIS.N = sumskipnan(HIS.H);
60 for k = 1:size(HIS.H,2);
61 t = HIS.X(:,min(k,size(HIS.X,2)));
62 HIS.H(xor(t<=min(TH(k,:)), t>=max(TH(k,:))),k) = 0;
64 Nnew = sumskipnan(HIS.H);
65 R.ratio_lost = 1-Nnew./HIS.N;
68 % scale into physical values
71 %for k=1:length(HDR.InChanSelect),
72 % HIS.X(:,k) = t(:,min(size(t,2),k))*HDR.Calib(k+1,k)+HDR.Calib(1,k);
74 HIS.X = [ones(size(HIS.X,1),1),repmat(HIS.X,1,size(HIS.H,2)./size(HIS.X,2))]*H.Calib;
78 fprintf(2,'ERROR: arg1 is not a histogram\n');
81 if nargin<2, fun=[]; end;
83 global FLAG_implicit_unbiased_estimation;
84 %%% check whether FLAG was already defined
85 if exist('FLAG_implicit_unbiased_estimation')~=1,
86 FLAG_implicit_unbiased_estimation=[];
88 %%% set DEFAULT value of FLAG
89 if isempty(FLAG_implicit_unbiased_estimation),
90 FLAG_implicit_unbiased_estimation=logical(1);
93 sz = size(H.H)./size(H.X);
94 R.N = sumskipnan(H.H,1);
95 R.SUM = sumskipnan(H.H.*repmat(H.X,sz),1);
96 R.SSQ = sumskipnan(H.H.*repmat(H.X.*H.X,sz),1);
97 %R.S3P = sumskipnan(H.H.*repmat(H.X.^3,sz),1); % sum of 3rd power
98 R.S4P = sumskipnan(H.H.*repmat(H.X.^4,sz),1); % sum of 4th power
99 %R.S5P = sumskipnan(H.H.*repmat(H.X.^5,sz),1); % sum of 5th power
104 R.SSQ0 = R.SSQ-R.SUM.*R.MEAN; % sum square of mean removed
106 if FLAG_implicit_unbiased_estimation,
107 n1 = max(R.N-1,0); % in case of n=0 and n=1, the (biased) variance, STD and STE are INF
112 R.VAR = R.SSQ0./n1; % variance (unbiased)
113 R.STD = sqrt(R.VAR); % standard deviation
114 R.SEM = sqrt(R.SSQ0./(R.N.*n1)); % standard error of the mean
115 R.SEV = sqrt(n1.*(n1.*R.S4P./R.N+(R.N.^2-2*R.N+3).*(R.SSQ./R.N).^2)./(R.N.^3)); % standard error of the variance
116 R.Coefficient_of_variation = R.STD./R.MEAN;
119 x = repmat(H.X,sz) - repmat(R.MEAN,size(H.X,1),1);
120 R.CM3 = sumskipnan(H.H.*(x.^3),1)./n1;
121 R.CM4 = sumskipnan(H.H.*(x.^4),1)./n1;
122 %R.CM5 = sumskipnan(H.H.*(x.^5),1)./n1;
124 R.SKEWNESS = R.CM3./(R.STD.^3);
125 R.KURTOSIS = R.CM4./(R.VAR.^2)-3;
126 R.MAD = sumskipnan(H.H.*abs(x),1)./R.N; % mean absolute deviation
128 H.PDF = H.H./H.N(ones(size(H.H,1),1),:);
129 status=warning('off');
130 R.ENTROPY = -sumskipnan(H.PDF.*log2(H.PDF),1);
132 R.QUANT = repmat(min(diff(H.X,[],1)),1,size(H.H,2)/size(H.X,2));
135 R.RANGE = R.MAX-R.MIN;
139 if strncmp(fun,'CM',2)
141 R = sumskipnan(H.PDF.*(x.^oo),1);